Nonconvex Weighted ℓp Minimization Based Group Sparse Representation Framework for Image Denoising
نویسندگان
چکیده
Nonlocal image representation or group sparsity has attracted considerable interest in various low-level vision tasks and has led to several state-of-the-art image denoising techniques, such as BM3D, LSSC. In the past, convex optimization with sparsity-promoting convex regularization was usually regarded as a standard scheme for estimating sparse signals in noise. However, using convex regularization cannot still obtain the correct sparsity solution under some practical problems including image inverse problems. In this paper we propose a non-convex weighted `p minimization based group sparse representation (GSR) framework for image denoising. To make the proposed scheme tractable and robust, the generalized soft-thresholding (GST) algorithm is adopted to solve the non-convex `p minimization problem. In addition, to improve the accuracy of the nonlocal similar patch selection, an adaptive patch search (APS) scheme is proposed. Experimental results demonstrate that the proposed approach not only outperforms many state-of-the-art denoising methods such as BM3D and WNNM, but also results in a competitive speed.
منابع مشابه
A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملPerformance evaluation of typical approximation algorithms for nonconvex ℓp-minimization in diffuse optical tomography.
The sparse estimation methods that utilize the ℓp-norm, with p being between 0 and 1, have shown better utility in providing optimal solutions to the inverse problem in diffuse optical tomography. These ℓp-norm-based regularizations make the optimization function nonconvex, and algorithms that implement ℓp-norm minimization utilize approximations to the original ℓp-norm function. In this work, ...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملFast Reconstruction of SAR Images with Phase Error Using Sparse Representation
In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...
متن کاملAnalyzing the Weighted Nuclear Norm Minimization and Nuclear Norm Minimization based on Group Sparse Representation
Nuclear norm minimization (NNM) tends to over-shrink the rank components and treats the different rank components equally, thus limits its capability and flexibility. Recent studies have shown that the weighted nuclear norm minimization (WNNM) is expected to be more accurate than NNM. However, it still lacks a plausible mathematical explanation why WNNM is more accurate than NNM. This paper ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Signal Process. Lett.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017